STUDER

PROFESSIONAL AUDIO EQUIPMENT

MASTER RECORDER

A816

Bedienerfreundliche Oberfläche

- Tonbandgerät für den robusten Dauerbetrieb mit nationaler Schichtlage (Schicht aussen)
- erhältlich in Stereo (0,75 mm Trennspur) oder mit zusätzlicher Timecodespur
- einbaubar in die ARD- Einheitstruhe oder in spezielle "Kniefrei- Konsolen"
- Äusserst bedienungsgerecht: grosse Laufwerktasten, regelbare Umspulgeschwindigkeit, Vorkopfschere, Klebeschiene auf Kopfträger
- Stabiles verwindungssteifes Guss- Chassis, federnd dreipunktgelagert
- Extrem servicefreundlich:
 Alle Steckprints einfach zugänglich,
 Motoren wartungsfrei

Das Tonbandgerät Studer A816 ist eine Neuentwicklung, speziell für die Anforderungen des deutschen Marktes. In ihm verbindet sich jahrzehntelange Erfahrung mit der Anwendung neuster Technologie; entstanden ist dabei ein Gerät, das sich auch im harten Dauereinsatz bewährt.

Das Laufwerk besteht aus einem verrippten und daher extrem verwindungssteifen Aluminium Gusschassis. Durch den Einbau in nicht vollständig plane Konsolen können oft starke Kräfte auf ein Chassis einwirken, wodurch z.B. Bandlaufeigenschaften beeinträchtigt werden können. Nicht so bei der A816: aufgrund eines völlig neuen Konstruktionsprinzips ist das eigentliche Laufwerkchassis über eine Dreipunkt-Lagerung von den Auflageflächen entkoppelt, so dass keine Biegekräfte übertragen werden können.

Der Bandlauf ist für Bandwickel mit aussenliegender Schicht konzipiert und so angeordnet, dass ein einfaches Einlegen möglich ist.

Die Tachorolle links vor dem Kopfträger erzeugt die Steuer- und Zählimpulse; daher wird, wenn gewünscht, auch bei Papierkorbbetrieb noch eine einwandfreie Bandlängenmessung vorgenommen. Die Bandführung am Kopfträger selbst erfolgt mit vorgespannten Edelsteinführungen. Diese Technik garantiert einen hochpräzisen Bandlauf mit ausgezeichneter Phasen- und Amplitudenstabilität, auch bei hohen Frequenzen.

Die Bandandruckrolle ist in Bandlaufrichtung taumelbar und kann so auf optimale Senkrechtstellung eingestellt werden.

Eine Lichtschranke erkennt Gelb- und TELCOM-Vorspannband und löst die entsprechenden Steuersignale aus.

Die Bedienung ist auf Effizienz und Bedienungssicherheit ausgelegt. Die Hauptlaufwerkstasten sind, wie von den grossen STUDER- Tonbandgeräten gewohnt, sehr gross.

Die PLAY-Taste ist darüber hinaus noch geriffelt, um auch bei Blindbedienung eine klare Funktionserkennung zu erlauben.

Die Umspul- Geschwindigkeit und -Richtung wird durch einen Drehhebel auf der linken Seite definiert, ein zweiter rechts erlaubt das graduelle Hineinhören beim Umspulen.

Zum Markieren von Bandstellen kann die äusserste rechte Führungsrolle kurzzeitig definiert angehoben werden (Bandheber). Die Bandverkantung bleibt dabei aufgrund der grossen freien Längen zwischen den Rollen sehr klein.

Reaktionsschnelles Laufwerk

Der Bandschnitt kann nach zwei verschieden Verfahren erfolgen: Als Option verfügt der Kopfträger über eine eingebaute Vorkopf- Schere, die in einem Arbeitsgang das Band vom Wiedergabekopf abhebt und richtigen Winkel schneidet; dabei werden seitliche Ausweichungen des Bandes vermieden. Zum Montieren dient eine im Kopfträgerdeckel eingelassene Klebeschiene. Alternativ kann der Schnitt auch per Guillotine erfolgen, die in einer Klebeschiene integriert ist:

Der Antrieb erfolgt über einen wartungsfreien bürstenlosen DC- Capstanmotor mit eigener Prozessorsteuerung. Er ist oben und unten kugelgelagert, wobei Axialkräfte durch ein Gleitlager abgefangen werden. Dieses Prinzip garantiert sehr kleine Tonhöhenschwankungswerte in einem weiten Temperaturbereich (garantierte Gleichlaufdaten zwischen +5 und 40°C, Start ab -5°C). Die wartungsfreien, bürstenlosen AC- Wickelmotoren werden aus einem internen Dreiphasengenerator gespeist und erzeugen ein vibrationsfreies Drehmoment. Netzfrequenz und Netzüberlagerungen (Rundsteuersignale) bleiben so ohne

Einfluss auf Bandzug- und Wickeleigenschaften. Die Leistungsendstufe ist geschaltet; dadurch ergeben sich durch hohen Wirkungsgrad sehr kurze Startund Rangierzeiten, bei gleichzeitig geringer Wärmeentwicklung.

Die Verstärker bieten optimale Pulsübertragung, dank gruppenlaufzeit- kompensierter Entzerrungen in den Verstärkerzweigen.

Das Netzteil ist so konzipiert, dass es neben kleinstmöglichem "Ripple" auch sehr wenig Wärme entwikkelt. Dies hat betrieblich den grossen Vorteil, dass daher auch bei Einbau in eine Truhe das Gerät aufgrund dieser energiesparenden Massnahmen ohne Lüfter auskommt.

Die EMV- Vorschriften R2 mit Bezug auf Strahlung und leitungsgebundene Störungen werden erfüllt.

Der Einbau des Tonbandgerätes STUDER A816 in eine ARD- Einheitstruhe ist ohne Modifikationen möglich; der Elektronikkorb ist dabei nach vorne geklappt und die Anschlüsse liegen in diesem Falle vorn. Wird der Elektronikkorb gelöst und nach hinten geschwenkt, lässt sich das Gerät auch in eine Spezialkonsole einbauen, die grösstmögliche Kniefreiheit gewährleistet.

Die Anschlüsse.

Alle NF- Signale werden über XLR- Stecker geführt:

Kanal 1 und 2, Ein- und Ausgang

■ Timecodesignal (optional), Ein- und Ausgang Die sonstigen Signale werden über D-Subminiaturstecker mit verschiedener Polzahl geführt:

 Monitor zum Anschluss der Monitoreinheit AE15A. bzw. der STUDER- Monitoreinheit

- TELCOM- Steuersignale (auch für DOLBY- System)
- Parallelschnittstelle
- erweiterte Parallelschnittstelle
- externes Timecode- Display
- Anschluss für STUDER Autolocator
- Synchronizer- Anschluss
- Rs 422- Schnittstelle nach EBU/SMPTE
- Rs 232- Schnittstelle
- Speisung f
 ür externe Ger
 äte (z. B. TELCOM)
 Im Anschlusspanel sind ausserdem die Betriebsspan-

Im Anschlusspanel sind ausserdem die Betriebsspan nungsüberwachungsanzeigen, der Betriebsstundenzähler sowie eine M6- Klemmschraube für den Anschluss einer Betriebserde untergebracht.

Technische Daten

(provisorisch)

Wahlweise bis vier Nominal-Bandgeschwindigkeiten über Tastenfeld aktivierbar. Nominalgeschwindigkeit einstellbar um	Bandgeschwindigkeiten	Nominal		,2 - 38,1 - 1 - 15 -	9,05 - 9,525 7,5 - 3,750		
Nominalgeschwindigkeit einstellbar um in Schritten von 0,025%		Wahlweise bis vier Nominal-Bandgeschwindigkeiten					
Variabel Nominalgeschwindigkeit ± 7 HI			digkeit einstell				
mit Istwertanzeige, wahlweise in HT [Halbtonen], % Abweichung max.±0,2 % max.0,1 % Bandschlupf max. Spulendurchmesser (1,25) 318 mm Min. Spulen-Kerndurchmesser (1,27) 45 mm Spulen-Kerndurchmesser (1,25) 318 mm Min. Spulen-Kerndurchmesser (1,25) 318 mm Min. Spulen-Kerndurchmesser (1,25) 4507,		Variabel		minalgeschwir	ndigkeit ± 7 HT		
## Abweichung oder IPS; programmierbar. ## Abweichung max. ± 0,2 % ## Bandspulen Max. Spulendurchmesser (12,5") 318 mm ## Min. Spulen-Kerndurchmesser (12,5") 318 mm ## Min. Spulen-		mit Istwertanzeig	e. wahlweise in				
Bandspulen		% Abweichung od					
Bandspulen Max. Spulendurchmesser (1,2,5") 318 mm Min. Spulen-Kerndurchmesser (1,77") 45 mm 47 mm 45 mm 40°C.	Bandschlunf	Abweichung					
Spitzenwert bewertet, gemessen nach DIN 45507, bzw. IEC Publ. 386, Umgebungstemperatur 040 °C. bei Bandgeschwindigkeit 76 cm/s max. 0,03 % max. 0,04 % 38 cm/s: max. 0,04 % max. 0,06 % max. 0,06 % max. 0,06 % max. 0,10 % max. 0,1	•	Max. Spulendurch	ımesser	(1			
Spitzenwert bewertet, gemessen nach DIN 45507, bzw.IEC Publ. 386, Umgebungstemperatur 040°C, bei Bandgeschwindigkeit 76 cm/s max. 0,049 % 38 cm/s: 19 cm/s: max. 0,169 % 9.5 cm/s: max. 0,169 % 9.5 cm/s: max. 0,109 % 9.5 cm/s		Min. Spulen-Kerno	durchmesser	(1			
bzw.IEC Publ. 386, Umgebungstemperatur 0 40 °C. bei Bandgeschwindigkeit 76 cm/s max. 0,04 % 19 cm/s: max. 0,04 % 19 cm/s: max. 0,14 % 19 cm/s: max. 0,14 % max. 0,16 % max		0.7		L DIN AF	The state of the s		
Startzeit Startzeit zum Erreichen des zweifachen, spezifizierten Tonhöhen-Schwankungswertes. Bei Bandgeschwindigkeit 38 cm/s, DIN-Spulenkern mit 1000 m Band, oder NAB-Spule mit 762 m (2500 ft) Band: ca. 0,4 s Stellige LED-Anzeige in Stunden, Minuten, Sekunden und Zehntelssekunden, bei allen Bandgeschwindigkeiten. Ab Null, in Rückwartsrichtung, mit negativem Vorzeichen, betragsmässig aufwartszahlend. Bereich: 9 h 59 min 59 s 23 h 59 min 59,9 s Umspulgeschwindigkeit programmierbar: 4	Tonnonenschwankungen						
Startzeit Zum Erreichen des zweifachen, spezifizierten Tonhöhen-Schwankungswertes. Bei Bandgeschwindigkeit 38 cm/s, DIN-Spulenkern mit 1000 m Band, oder NB-Spule mit 762 m (2500 ft) Band: Gstellige LED-Anzeige in Stunden, Minuten, Sekunden und Zehnteissekunden, bei allen Bandgeschwindigkeiten. Ab Null, in Rückwärtsrichtung, mit negativem Vorzeichen, betragsmässig aufwärtszählend. Bereich: 9 h 59 min 59 s 23 h 59 min 59,9 s Greich: 9 h 50 min 59 s 23 h 59 min 59,9 s Greich: 9 h 59 min 59 s 23 h 59 min 59,9 s Greich: 9 h 50 min 59 s 24 h		bei Bandgeschwir			max. 0,03 %		
Zum Erreichen des zweifachen, spezifizierten Tonhöhen-Schwankungswertes. Bei Bandgeschwindigkeit 38 cm/s, DIN-Spulenkern mit 1000 m Band., oder NAB-Spule mit 762 m (2500 ft) Band: Ca. 0,4 s					max. 0,04 %		
Schwankungswertes. Bei Bandgeschwindigkeit 38 cm/s, DIN-Spulenkern mit 1000 m Band, oder NAB-Spule mit 762 m (2500 ft) Band: ca. 0,4 s Setellige LED-Anzeige in Stunden, Minuten, Sekunden und Zehntelssekunden, bei allen Bandgeschwindigkeiten. Ab Null, in Rückwartsrichtung, mit negativem Vorzeichen, betragsmässig aufwärtszählend. Bereich: 9 h 59 min 59 s 23 h 59 min 59,9 s programmierbar: (4 472 ips) 0,1 12 m/s				JC 10	max. 0,10 %		
Sandzähler 6 stellige LED-Anzeige in Stunden, Minuten, Sekunden und Zehntelssekunden, bei allen Bandgeschwindigkeiten. Ab Null, in Rückwartsrichtung, mit negativem Vorzeichen, betragsmässig aufwärtszählend. Bereich: −9 h 59 min 59 s 23 h 59 min 59,9 s programmierbar: (4472 ips) 0,112 m/s für 1000 m Magnetband: ca. 90 s 23 h 59 min 59,9 s für 762 m (2500 ft) Magnetband: ca. 90 s 270 s mit Vollem 1000 m-Wickel (1/4"-Magnetband), aus maximaler Umspulgeschwindigkeit: ca. 4 s im Wiedergabe- und Aufnahmemodus: nominal (70 p) 0,7 N nominal (80 p) 0,8 N s im Vor-/Rückspulmodus: nominal (80 p) 0,8 N nominal (80 p) 0,8 N nominal (80 p) 0,8 N s ymmetrisch edfrei Eingangsimpedanz, 30 Hz 20 kHz. ≥ 10 kOhm asymmetrisch beschaltet: ≥ 10 kOhm asymmetrisch eingangstransformator: + 24 dBu gesetzt ist: + 26 dBu Operating Level, auf 0/+ 6 dBu gesetzt ist: + 26 dBu Operating Level, auf 0/+ 6 dBu gesetzt ist: + 26 dBu ohne Ausgangspegel: mit Transformator, elektronisch symmetrisch ender programmierbar, nominal + 6/+10/+14/+16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohm): + 24 dBu ohne Ausgangstransfor	Startzeit	Schwankungswer DIN-Spulenkern n	tes. Bei Bandge nit 1000 m Band	eschwindigkeit d, oder	38 cm/s,		
Zehntelssekunden, bei allen Bandgeschwindigkeiten. Ab Null, in Rückwärtsrichtung, mit negativem Vorzeichen, betragsmässig aufwartszählend. Bereich: -9 h 59 min 59 s 23 h 59 min 59,9 s programmierbar: (4 472 ips) 0,1 12 m/s für 1000 m Magnetband: ca. 90 s ca. 90 s mit vollem 1000 m-Wickel (¼4"-Magnetband), aus maximaler Umspulgeschwindigkeit: ca. 4 s im Wiedergabe- und Aufnahmemodus: nominal (70 p) 0,7 N nominal (70 p) 0,8 N mominal (70	Bandzähler						
betragsmässig aufwärtszählend. Bereich: -9 h 59 min 59 s 23 h 59 min 59,9 s programmierbar: (4 472 ips) 0,1 12 m/s für 762 m (2500 ft) Magnetband: ca. 90 s ca. 70 s Bremszeit aus Umspulen mit vollem 1000 m-Wickel (¼4 -Magnetband), aus maximaler Umspulgeschwindigkeit: ca. 4 s im Wiedergabe- und Aufnahmemodus: nominal (70 p) 0,7 N nominal (80 p) 0,8 N im Vor-/Rückspulmodus: nominal (80 p) 0,8 N im Vor-/Rückspulmodus: nominal (80 p) 0,8 N eingänge - mit Transformator, symmetrisch erdfrei eingangsimpedanz, 30 Hz 20 kHz: ≥10 kohm ≥ 10 kohm eingangsmendenz, 30 Hz 20 kHz. symmetrisch beschaltet: asymmetrisch beschaltet: asymm		Zehntelssekunder	n, bei allen Ban	dgeschwindigk	keiten.		
Umspulgeschwindigkeit Umspulzeit für 1000 m Magnetband:		betragsmässig au	fwärtszählend.				
Fire transformator: Ca. 90 states Fire transformator: Ca. 4 states C	Umspulgeschwindigkeit	Control design (e)	0 II 00 IIII				
mit vollem 1000 m-Wickel (¼"-Magnetband), aus maximaler Umspulgeschwindigkeit: ca. 4 s im Wiedergabe- und Aufnahmemodus: nominal (70 p) 0,7 N nominal (80 p) 0,8 N nominal (80 p) 0,9 N nominal (80 p	The second secon	für 1000 m Magn			ca. 90 s		
im Wiedergabe- und Aufnahmemodus: im Vor-/Rückspulmodus: im Vor-/Pad Bu	Bremszeit aus Umspulen	mit vollem 1000	m-Wickel (1/4"-N	Magnetband),			
im Vor-/Rückspulmodus: - mit Transformator, Eingangsimpedanz, 30Hz20 kHz: - ohne Transformator, Eingangsimpedanz, 30Hz20 kHz, - ohne Transformator, - elektronisch symmetriert Eingangsimpedanz, 30Hz20 kHz, - symmetrisch beschaltet: - ≥ 20 kOhm - asymmetrisch beschaltet: - ≥ 10 kOhm - bezogen auf Bezugs-Magnetfluss, intern - programmierbar, nominal +6/+10/+14/+16 dBu Maximale Eingangspegel: - mit Eingangstransformator: - venn der nominale Eingangspegel, bezogen auf - Operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) Ausgänge - mit Transformator, - ohne Transformator, - ohne Transformator, - ohne Transformator, - ohne Transformator, - elektronisch symmetriert - Impedanz, 30Hz20 kHz, Last ≥ 200 0 hm: - ohne Transformator, - elektronisch symmetriert - Impedanz, 30Hz20 kHz, Last ≥ 200 0 hm: - ≤ 30 0 hm - ohne Transformator, - elektronisch symmetriert - impedanz, 30Hz20 kHz, Last ≥ 200 0 hm: - ≤ 30 0 hm - ohne Transformator (Last ≥ 200 0 hm: - ≤ 4dBu - bezogen auf Bezugs-Magnetfluss, intern - programmierbar, nominal +6/+10/+14/+16 dBu - bezogen auf Bezugs-Magnetfluss, intern - programmierbar, nominal +6/+10/+14/+16 dBu - symmetrische Last ≥ 200 0 hm: - 42 dBu - symmetrische Last ≥ 200 0 hm: - 24 dBu - symmetrische Last ≥ 200 0 hm: - 24 dBu - symmetrische Last ≥ 600 0 hm: - 24 dBu - symmetrische Last ≥ 600 0 hm: - 24 dBu - symmetrische Last ≥ 600 0 hm: - 24 dBu - asymmetrische Last ≥ 600 0 hm: - 24 dBu - 38 kmz ± 1 dB - 38 kmz ± 1 dB - 30 Hz 20 kHz ± 2 dB - 40 Hz 20 kHz ± 2 dB - 30 Hz 12 kHz ± 2 dB - 30 Hz 12 kHz ± 2 dB - 30 Hz 12 kHz ± 1 dB							
Eingangsimpedanz, 30 Hz20 kHz: ≥ 10 kOhm ohne Transformator, elektronisch symmetriert Eingangsimpedanz, 30 Hz20 kHz, symmetrisch beschaltet: asymmetrisch beschaltet: ≥ 10 kOhm ohne Transformator; nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Eingangstransformator: + 24 dBu (wenn der nominale Eingangspegel, bezogen auf Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) Ausgänge — mit Transformator; symmetrisch erdfrei Impedanz, 30 Hz 20 kHz, Last ≥ 200 Ohm: ≤ 50 Ohm ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 Ohm: ≤ 30 Ohm ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 Ohm: ≤ 30 Ohm ohne Transformator (Last ≥ 200 Ohm: ≤ 30 Ohm ohne Ausgangstransformator (Last ≥ 200 Ohm: + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohne: + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohne: + 24 dBu ohne Ausgangstransformator (Last ≥ 200 Ohne: +	Bandzug	im Wiedergabe- u		iodus:			
symmetrisch beschaltet: asymmetrisch beschaltet: ≥ 20 kOhm asymmetrisch beschaltet: ≥ 10 kOhm bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Eingangspegel: - mit Eingangstransformator: - ohne Eingangstransformator: - wit Transformator, symmetrisch erdfrei Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0 hm): - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0 hm): - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Ausgangstransformator (Last ≥ 200 0 hm): - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Ausgangstransformator (Last ≥ 200 0 hm): - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Ausgangstransformator (Last ≥ 200 0 hm): + 24 dBu - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Ausgangstransformator (Last ≥ 200 0 hm): - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Ausgangstransformator (Last ≥ 200 0 hm): - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Ausgangstran	Bandzug		nd Aufnahmem	iodus: nomir	nal (70 p) 0,7 N		
programmierbar, nominal + 6/+10/+14/+16 dBu Maximale Eingangspegel: - mit Eingangstransformator: +24 dBu operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) Ausgänge - mit Transformator, symmetrisch erdfrei Impedanz, 30 Hz 20 kHz, Last ≥200 0hm: ≤50 0hm ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥200 0hm: ≤30 0hm - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6/+10/+14/+16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥200 0hm): +24 dBu ohne Ausgangstransformator (Last ≥200 0hm): +28 dBu - symmetrische Last ≥200 0hm: +26 dBu - symmetrische Last ≥200 0hm: +24 dBu operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥600 0hm: +30 dBu (wenn der nominale Ausgangspegel, bezogen auf Operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥600 0hm: +24 dBu 38 cm/s: 30 Hz 20 kHz ± 2 dB 40 Hz 20 kHz ± 2 dB 40 Hz 20 kHz ± 2 dB 40 Hz 20 kHz ± 1 dB 19 cm/s: 30 Hz 16 kHz ± 2 dB 30 Hz 12 kHz ± 1 dB 30 Hz 12 kHz ± 1 dB		im Vor-/Rückspul - mit Transforma Eingangsimped - ohne Transform	nd Aufnahmem modus: ator, anz, 30 Hz 20 nator,	nodus: nomir nomir symm) kHz: elektronisc	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 kO hm		
- mit Eingangstransformator: - ohne Eingangstransformator: (wenn der nominale Eingangspegel, bezogen auf Operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) Ausgänge - mit Transformator, Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - ohne Transformator, Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - ohne Transformator, Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - ohne Transformator, Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - ohne Transformator, Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6/+10/+14/+16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0 hm): - symmetrische Last ≥ 200 0 hm: - asymmetrische Last ≥ 200 0 hm: - asymmetrische Last ≥ 200 0 hm: - symmetrische Last ≥ 200 0 hm: - symmetrische Last ≥ 600 0 hm: - 42 dBu - asymmetrische Last ≥ 600 0 hm: - 42 dBu - 38 cm/s: 30 Hz 12 kHz ± 1 dB - 19 cm/s: 30 Hz 16 kHz ± 2 dB - 30 Hz 16 kHz ± 2 dB		im Vor-/Rückspul - mit Transforma Eingangsimped - ohne Transform	modus: htor, anz, 30 Hz20 nator, anz, 30 Hz20 symmetris	nodus: nomir nomir symm) kHz: elektronisc) kHz, sch beschaltet:	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 k0hm ch symmetriert : ≥ 20 k0hm		
- ohne Eingangstransformator: + 28 dBu (wenn der nominale Eingangspegel, bezogen auf Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) Ausgänge - mit Transformator, symmetrisch erdfrei Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 50 0 hm ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 30 0 hm - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Ausgangstransformator (Last ≥ 200 0 hm): + 24 dBu ohne Ausgangstransformator (Last ≥ 200 0 hm): + 28 dBu - symmetrische Last ≥ 200 0 hm: + 24 dBu - asymmetrische Last ≥ 200 0 hm: + 24 dBu - asymmetrische Last ≥ 600 0 hm: + 24 dBu - asymmetrische Last	Eingänge	im Vor-/Rückspul - mit Transforma Eingangsimped - ohne Transforn Eingangsimped - bezogen auf Be	nd Aufnahmem modus: itor, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu	nodus: nomir nomir symm) kHz: elektronisc) kHz, sch beschaltet; isch beschalte	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 kOhm ch symmetriert : ≥ 20 kOhm tt: ≥ 10 kOhm		
Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) Ausgänge - mit Transformator, symmetrisch erdfrei Impedanz, 30Hz20 kHz, Last ≥ 200 0hm: ≤50 0hm one Transformator, elektronisch symmetriert Impedanz, 30Hz20 kHz, Last ≥ 200 0hm: ≤30 0hm - ohne Transformator, elektronisch symmetriert Impedanz, 30Hz20 kHz, Last ≥ 200 0hm: ≤30 0hm - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0hm): +24 dBu ohne Ausgangstransformator (Last ≥ 200 0hm): +28 dBu - symmetrische Last ≥ 200 0hm: +26 dBu - symmetrische Last ≥ 200 0hm: +26 dBu - asymmetrische Last ≥ 600 0hm: +30 dBu (wenn der nominale Ausgangspegel, bezogen auf Operating Level, auf 0 / +6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥ 600 0hm: +24 dBu Frequenzgang Aufnahme/Wiedergabe 76 cm/s: 40 Hz 22 kHz ± 2 dB 40 Hz 20 kHz ± 1 dB 19 cm/s: 30 Hz 18 kHz ± 1 dB 19 cm/s: 30 Hz 16 kHz ± 2 dB 30 Hz 12 kHz ± 1 dB 30	Eingänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transform Eingangsimped bezogen auf Be programmierba Maximale Eingan	nd Aufnahmem modus: itor, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel:	nodus: nomir nomir symm) kHz: elektronisc) kHz, sch beschaltet; isch beschalte	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 kOhm ch symmetriert : ≥ 20 kOhm tt: ≥ 10 kOhm		
Ausgänge - mit Transformator, symmetrisch erdfrei Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 50 0 hm ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 30 0 hm Ausgangspegel - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6/+10/+14/+16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0 hm): +24 dBu ohne Ausgangstransformator (Last ≥ 200 0 hm): +28 dBu - symmetrische Last ≥ 200 0 hm: +24 dBu - asymmetrische Last ≥ 200 0 hm: +24 dBu - symmetrische Last ≥ 200 0 hm: +30 dBu (wenn der nominale Ausgangspegel, bezogen auf Operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥ 600 0 hm: +24 dBu - asymmetrische Last ≥ 600	Eingänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transform Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstr ohne Eingangstr	nd Aufnahmem modus: itor, anz, 30 Hz20 nator, aarz, 30 Hz20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel: insformator: ransformator:	noming noming noming noming symm symm elektronisco kHz, etch beschaltet; isch beschaltet isch	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 k0hm ch symmetriert : ≥ 20 k0hm tt: ≥ 10 k0hm + 14 /+ 16 dBu + 24 dBu + 28 dBu		
Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 50 0 hm ohne Transformator, elektronisch symmetriert Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 30 0 hm Ausgangspegel bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0 hm): +24 dBu ohne Ausgangstransformator (Last ≥ 200 0 hm): +28 dBu - symmetrische Last ≥ 200 0 hm: +26 dBu - asymmetrische Last ≥ 200 0 hm: +24 dBu - symmetrische Last ≥ 600 0 hm: +30 dBu (wenn der nominale Ausgangspegel, bezogen auf 0 perating Level, auf 0 / +6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥ 600 0 hm: +24 dBu - asymmetrische Last ≥ 600 0 hm: +24	Eingänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstra ohne Eingangstr ohne Eingangst	nd Aufnahmem modus: http: http	nomir nomir nomir symm 0 kHz: elektronisc 0 kHz, sch beschaltet sisch beschaltet sisch beschaltet b	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥10 kOhm th symmetriert : ≥20 kOhm th: ≥10 kOhm +14 /+16 dBu +24 dBu +28 dBu		
Impedanz, 30 Hz 20 kHz, Last ≥ 200 0 hm: ≤ 30 0 hm Ausgangspegel - bezogen auf Bezugs-Magnetfluss, intern programmierbar, nominal + 6 / + 10 / + 14 / + 16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0 hm): +24 dBu ohne Ausgangstransformator (Last ≥ 200 0 hm): +28 dBu - symmetrische Last ≥ 200 0 hm: +26 dBu - asymmetrische Last ≥ 200 0 hm: +24 dBu - asymmetrische Last ≥ 600 0 hm: +30 dBu (wenn der nominale Ausgangspegel, bezogen auf Operating Level, auf 0 / +6 dBu gesetzt ist: +26 dBu - asymmetrische Last ≥ 600 0 hm: +24 dBu - asymmetrische Last ≥ 600 0 hm: +24 dBu - 38 kmz + 26 dBu - 38 kmz + 26 dBu - 38 kmz + 21 dBu - 38 kmz + 21 dBu - 30 Hz 12 kHz ± 1 dBu - 19 cm/s: 30 Hz 16 kHz ± 2 dBu - 30 Hz 12 kHz ± 1 dBu - 30 Hz 12	Eingänge Eingangspegel	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transform Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstra ohne Eingangstr ohne Eingangst	nd Aufnahmem modus: itor, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zuss-Magnetflu irr, nominal gspegel: insformator: ransformator: ransformator: inale Eingangsp, l, auf 0 / + 6 de tor,	nomir nomir nomir symm New Hart nomic symm New Ha	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 k0hm ch symmetriert : ≥ 20 k0hm tt: ≥ 10 k0hm + 14 /+ 16 dBu + 24 dBu + 28 dBu n auf + 26 dBu) etrisch erdfrei		
programmierbar, nominal + 6/+10/+14/+16 dBu Maximale Ausgangspegel: mit Ausgangstransformator (Last ≥ 200 0hm): +24 dBu ohne Ausgangstransformator (Last ≥ 200 0hm): +28 dBu - symmetrische Last ≥ 200 0hm: +26 dBu - asymmetrische Last ≥ 200 0hm: +30 dBu (wenn der nominale Ausgangspegel, bezogen auf Operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥ 600 0hm: +24 dBu Operating Level, auf 0/+6 dBu gesetzt ist: +26 dBu) - asymmetrische Last ≥ 600 0hm: +24 dBu Frequenzgang Aufnahme/Wiedergabe 76 cm/s: 40 Hz 22 kHz ±2 dB 60 Hz 20 kHz ±1 dB 38 cm/s: 30 Hz 16 kHz ±1 dB 19 cm/s: 30 Hz 16 kHz ±2 dB 30 Hz 12 kHz ±1 dB	Eingänge Eingangspegel	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transform Eingangsimped bezogen auf Be programmierba Maximale Eingangstra ohne Eingangstra ohne Eingangstra ohne Eingangstra mit Eingangstra ohne Eingangstra mit Transforma Impedanz, 30H	nd Aufnahmem modus: ator, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu irr, nominal gspegel: insformator: ransformator: ransformator; l, auf 0 / + 6 de tor, z 20 kHz, Las	nomin nomin nomin nomin symm likHz: elektronisc likHz, sch beschaltet; sisch beschaltet; sisch beschaltet sisch intern + 6/+10/- begel, bezoger Bu gesetzt ist: symm st ≥ 200 0 hm:	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 k0hm ch symmetriert ∴ ≥ 20 k0hm tt: ≥ 10 k0hm + 14 /+ 16 dBu + 24 dBu + 28 dBu n auf + 26 dBu) etrisch erdfrei ≤ 50 0hm		
mit Ausgangstransformator (Last ≥ 200 0hm): ohne Ausgangstransformator (Last ≥ 200 0hm): - symmetrische Last ≥ 200 0hm: - asymmetrische Last ≥ 200 0hm: - symmetrische Last ≥ 600 0hm: - 424 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0hm: - + 24 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu Operating Level, auf 0	Eingänge Eingangspegel	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstra ohne Eingangstra ohne Eingangstra mit Transforma Impedanz, 30H ohne Transform	nd Aufnahmem modus: utor, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetri zugs-Magnetflu irr, nominal gspegel: insformator: ransformator: inale Eingangs j, auf 0 / + 6 dt tor, z 20 kHz, Las nator,	nomir nomir symm kHz: elektronisc kHz, cich beschaltet: sisch beschaltet: sisch beschaltet	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥10 k0hm ch symmetriert : ≥20 k0hm ch ≥10 k0hm +14/+16 dBu +24 dBu +24 dBu +26 dBu) etrisch erdfrei ≤50 0hm h symmetriert		
- asymmetrische Last ≥ 200 0 hm: - symmetrische Last ≥ 600 0 hm: (wenn der nominale Ausgangspegel, bezogen auf Operating Level, auf 0 / + 6 dBu gesetzt ist: + 26 dBu) - asymmetrische Last ≥ 600 0 hm: + 24 dBu Frequenzgang Aufnahme/Wiedergabe 76 cm/s: 40 Hz 22 kHz ± 2 dB 60 Hz 20 kHz ± 1 dB 38 cm/s: 30 Hz 12 kHz ± 1 dB 19 cm/s: 30 Hz 16 kHz ± 2 dB 30 Hz 12 kHz ± 1 dB	Eingänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstra ohne Eingangstra ohne Eingangstra ohne Transforma Impedanz, 30H bezogen auf Be	nd Aufnahmem modus: anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel: insformator: ransformator: inale Eingangs; I, auf 0 / + 6 dl tor, z 20 kHz, Las nator, z 20 kHz, Las zugs-Magnetflu	nomir nomir nomir nomir symm kHz: elektronisc kHz, sch beschaltet issch beschaltet issch beschaltet issch beschaltet iss, intern begel, bezoger Bu gesetzt ist: symm st ≥ 200 0 hm: elektronisc st ≥ 200 0 hm: iss, intern	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥10 k0hm th symmetriert : ≥20 k0hm th:≥10 k0hm +14/+16 dBu +28 dBu +28 dBu etrisch erdfrei ≤500hm h symmetriert ≤300hm		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Eingänge Eingangspegel Ausgänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingang mit Eingangstra ohne Eingangstra mit Eingangstra mit Eingangstra ohne Transforma Impedanz, 30 H bezogen auf Be programmierba Maximale Ausgan mit Ausgangstran ohne Ausgangstran	nd Aufnahmem modus: ator, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel: instormator: inale Eingangs; I, auf 0 / + 6 dl tor, z 20 kHz, Las autor, z 20 kHz, Las izugs-Magnetflu ir, nominal gspegel: stormator (z 20 kHz, Las izugs-Magnetflu ir, nominal igspegel: stormator (Las nsformator (Las	noming noming noming symm likHz: elektronisco likHz, sch beschaltet sisch beschaltet sisch beschaltet sisch beschaltet sisch bezoger Bu gesetzt ist: symm elektronisc st ≥ 200 0 hm: siss, intern + 6/+10/+ tt ≥ 200 0 hm; sist ≥ 200 0 hm;	All (70 p) 0,7 N		
	Eingänge Eingangspegel Ausgänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstra ohne Eingangstra ohne Eingangstra mit Transforma Impedanz, 30H ohne Transforn Impedanz, 30H bezogen auf Be programmierba Maximale Ausgangstra symmetrische asymmetrische asymmetrische	nd Aufnahmem modus: http: anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetri zugs-Magnetflu nr, nominal gspegel: inale Eingangsp, l, auf 0 / + 6 dt tor, z 20 kHz, Las nator, z 20 kHz, Las stor, z 20 kHz, Las stormator (La st ≥ 2000 Ot Last ≥ 200 Ot Last ≥ 200 Ot Last ≥ 600 Ot	nomir nomir nomir symm SkHz: elektronisc SkHz, cich beschaltet sisch beschaltet symmit sisch ≥ 200 Ohm: si	All (70 p) 0,7 N		
38 cm/s: 30 Hz 20 kHz ± 2 dB 40 Hz 18 kHz ± 1 dB 19 cm/s: 30 Hz 16 kHz ± 2 dB 30 Hz 12 kHz ± 1 dB	Eingänge Eingangspegel Ausgänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingan mit Eingangstra ohne Eingangstra ohne Transforma Impedanz, 30H ohne Transforma Impedanz, 30H bezogen auf Be programmierba Maximale Ausgan mit Ausgangstra ohne Ausgangstra	nd Aufnahmem modus: anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel: insformator: ransformator: inale Eingangs; I, auf 0 / + 6 db tor, z 20 kHz, Las zugs-Magnetflu ir, nominal ngspegel: sformator (Las stormator (Las sisformator (Las Last ≥ 200 0 H Last ≥ 200 0 H Last ≥ 600 0 H Las	nomir nomir nomir nomir symm lkHz: elektronisc lkHz, sch beschaltet: isch besch beschaltet: isch besch	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 kOhm th symmetriert ≥ 20 kOhm th ≥ 10 kOhm + 14 /+ 16 dBu + 24 dBu + 28 dBu etrisch erdfrei ≤ 50 0hm th symmetriert ≤ 30 0hm th symmetriert ≤ 30 0hm th = 14 /+ 16 dBu + 24 dBu + 24 dBu + 26 dBu + 24 dBu + 26 dBu + 30 dBu n auf + 26 dBu)		
$19\mathrm{cm/s}$: $30\mathrm{Hz}$ $16\mathrm{kHz} \pm 2\mathrm{dB}$ $30\mathrm{Hz}$ $12\mathrm{kHz} \pm 1\mathrm{dB}$	Eingänge Eingangspegel Ausgänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingang mit Eingangstra ohne Eingangstra ohne Transforma Impedanz, 30 H ohne Transforma Impedanz, 30 H bezogen auf Be programmierba Maximale Ausgal mit Ausgangstra ohne Ausgangstra ohne Ausgangstra symmetrische asymmetrische symmetrische (wenn der nom Operating Leve asymmetrische	nd Aufnahmem modus: itor, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel: insformator: ransformator: ransformator z 20 kHz, Las auto, z 20 kHz, Las zugs-Magnetflu ir, nominal igspegel: sformator (La tor, z 20 kHz, Las zugs-Magnetflu ir, nominal igspegel: sformator (La Last ≥ 200 0 Last ≥ 200 0 Last ≥ 200 0 Last ≥ 600 0 inale Ausgangs I, auf 0 / + 6 di Last ≥ 600 0 I cast ≥ 600 0	nomir nomir nomir nomir symm lkHz: elektronisc lkHz, sch beschaltet: isch bezoger 3u gesetzt ist: im: im: im: im: im: im: im: im: im: im	nal (70 p) 0,7 N nal (80 p) 0,8 N etrisch erdfrei ≥ 10 kOhm th symmetriert ≥ 20 kOhm + 14 /+ 16 dBu + 24 dBu + 28 dBu) etrisch erdfrei ≤ 50 Ohm h symmetriert ≤ 30 Ohm -14 /+ 16 dBu + 24 dBu		
	Eingänge Eingangspegel Ausgänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingang mit Eingangstra ohne Eingangstra ohne Transforma Impedanz, 30 H ohne Transforma Impedanz, 30 H bezogen auf Be programmierba Maximale Ausgal mit Ausgangstra ohne Ausgangstra ohne Ausgangstra symmetrische asymmetrische symmetrische (wenn der nom Operating Leve asymmetrische	nd Aufnahmem modus: http: anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetri zugs-Magnetflu nr, nominal gspegel: nanformator: ransformator: ransformator ransformator tor, z 20 kHz, Las lator, z 20 kHz, Las lator, z 20 kHz, Las lator local local lator local loc	nomir nomir nomir symm kHz: elektronisc 0 kHz, cch beschaltet issch besch beschaltet issch beschaltet issch besch	al (70 p) 0,7 N al (80 p) 0,8 N etrisch erdfrei ≥ 10 k0hm th symmetriert : ≥ 20 k0hm th ≥ 10 k0hm + 14 /+ 16 dBu + 28 dBu + 28 dBu + 26 dBu) etrisch erdfrei ≤ 30 0hm - 14 /+ 16 dBu + 26 dBu) + 26 dBu + 26 dBu + 26 dBu + 26 dBu + 24 dBu + 26 dBu + 24 dBu		
	Eingänge Eingangspegel Ausgänge	im Vor-/Rückspul mit Transforma Eingangsimped ohne Transforn Eingangsimped bezogen auf Be programmierba Maximale Eingang mit Eingangstra ohne Eingangstra ohne Transforma Impedanz, 30 H ohne Transforma Impedanz, 30 H bezogen auf Be programmierba Maximale Ausgal mit Ausgangstra ohne Ausgangstra ohne Ausgangstra symmetrische asymmetrische symmetrische (wenn der nom Operating Leve asymmetrische	nd Aufnahmem modus: itor, anz, 30 Hz 20 nator, anz, 30 Hz 20 symmetris asymmetr zugs-Magnetflu ir, nominal gspegel: insformator: ransformator: ransformator z 20 kHz, Las auto / + 6 db tor, z 20 kHz, Las zugs-Magnetflu ir, nominal ngspegel: sformator (La sts ≥ 200 0t Last ≥ 200 0t Last ≥ 200 0t Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 db Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Last ≥ 600 0t Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs I, auf 0 / + 6 dc Inale Ausgangs III Inale I	nomir nomir nomir symm SkHz: elektronisc DkHz, cisch beschaltet: sisch beschaltet: symm. symm. st ≥ 200 Ohm: sisch ≥ 200	All (70 p) 0,7 N		

Störspannungsabstand	über Band gemessen (Aufnahme/Wiedergabe						
CCIR	Entzerrung nach CCIR, gemessen mit Magnetband AGFA PER 528, BASF LGR 50 oder äquivalentem Bandtyp.						
	AGFA PER	28, BASE	cm/s:	oder aq	uivalente 19	em Band 38	76
Vollspur	6,3 mm Sp		nWb/m:	250	320	320	320
	unbewertet	, nach CC nach CC		57 dB	61 dB 51 dB	62 dB 52 dB	64 dE
	bewertet, bewertet,	ASA-A (I		48 dB 62 dB	64 dB	66 dB	68 dB
Stereo	2,75 mm Sp	urbreite	nWb/m:	400	510	510	510
	unbewertet bewertet,	, nach CC nach CC		58 dB 49 dB	62 dB 52 dB	63 dB 54 dB	65 dE
	bewertet,	ASA-A (I		63 dB	65 dB	67 dB	69 dB
2-Spur	2 mm Spur		nWb/m:	400	510	510	510 64 dB
	unbewertet bewertet,	nach CC		57 dB 48 dB	61 dB 51 dB	62 dB 52 dB	54 dB
	bewertet,	ASA-A (I		61 dB	64 dB	66 dB	68 dB
Klirrfaktor CCIR	Aufnahme-V PER 528/L0		e, gemes	ssen mit	Magnet	band	
	Vollspur		/s/1kh		nWb/m		2,0%
			/s / 1 kH /s / 1 kH		nWb/m nWb/m		≦ 1,5 % ≦ 1,0 %
			/s / 1 kH		nWb/m		1,0%
	Stereo/		/s/ 1 kH		nWb/m		2,0 %
	2-Spur		/s / 1 kH /s / 1 kH		nWb/m nWb/m		≦ 1,5 % ≦ 1,0 %
			/s / 1 kH		nWb/m		≤ 1,0 %
Übersprechdämpfung	nach DIN 45	5521, bei	1 kHz (2	-Spur-Ge	räte)		65 dB
Löschdämpfung	bei 1 kHz, 5	SUSSESSED AND SUSSESSED	**SII	- N	- 100	1 7	
	mit Vollspur mit überlap			schkopf			80 dB
Lösch- und Biasfrequenz	bei allen Ba	ndgeschw	indigkeit	en:		153	,6 kmž
Stromversorgung	umschaltba	r 100	V 140) V / 20	0 V 2	40 V / : 50 Hz /	
Leistungsaufnahme	(bei Nennsp	annung)	im Stills				90 W
		Aufnahme auf 2 Kanāle Vor-/Rückspulen					150 W 190 W
					ufnahme	9	280 W
Zulässiger Netzausfall	bei Erhaltur	g des Bet	riebszus	tandes:		max.	100 ms
Umgebungs-		814		-			
Temperaturbereich				(+32	104 %		
Luftfeuchtigkeit	nicht konde	THE STREET					90%
Sicherheits-Standard	gemäss IEC (Netz-Filter, und Spannu Schutzklass	-Schalter ngswähle	, -Sicheru r gemäss	ing, -Tra	nsforma	tor	
Gewichte	ohne Konso		100000000000000000000000000000000000000	kung:			
					o (Luftfr	netto ca acht) ca	
Technische Daten des Zeite	7070 20100	- 2000			Will nemicle 0		
	Der Zeitcod DIN 45511,		ntspricht	der IEC	Publikat	ion 461,	
Spurbreite/Spurlage	in Bandmitt		Carlo		HIME		38 mm
Code-Format	80 Bit-Adres (umschaltba		29 97/	30 Bilde	r/Sekun		E/EBU
Bandgeschwindigkeiten	Çuriocilares		20,011	cm/s:	76,2 - 30 -	38,1 -	1:
					March 11	/b/m pp	-
Magnetfluss der Zeitcode-	Spur		ol genne		729 nW		
Magnetfluss der Zeitcode- Eingang	über Transf					etrisch,	
Eingang des Zeitcode-Kanals					symme	≥10	0 kOhm
Eingang des Zeitcode-Kanals	über Transf				nom min		2 Vss
Eingang des Zeitcode-Kanals Eingangspegel Ausgang	über Transf Eingangsim über Transf	ormator,			nom min max	≥10 ninal: nimal: 0, nimal: etrisch,	2 VSS 25 VSS 4 VSS erdfrei
Eingang des Zeitcode-Kanals Eingangspegel Ausgang des Zeitcode-Kanals	über Transf Eingangsim Über Transf Ausgangsim	ormator,			nom min max	≥10 ninal: nimal: 0, nimal: etrisch,	2 VSS 2 VSS 25 VSS 4 VSS erdfrei
Eingang des Zeitcode-Kanals Eingangspegel Ausgang des Zeitcode-Kanals Ausgangspegel	über Transf Eingangsim Über Transf Ausgangsim Last ≥200	ormator, ipedanz Ohm	/m Band	fluss de	nom min max symme	≥10 minal: minal: minal: minal: minal: etrisch, ≤4	2 VSS 2 VSS 25 VSS 4 VSS erdfrei
Eingang des Zeitcode-Kanals Eingangspegel Ausgang des Zeitcode-Kanals Ausgangspegel Übersprechdämpfung	über Transf Eingangsim Über Transf Ausgangsim	ormator, pedanz Ohm f 510 nWb			nom min max symme	≥10 minal: imal: 0, imal: etrisch, ≤4 pur,	2 VSS 25 VSS 4 VSS
Eingang	über Transf Eingangsim Über Transf Ausgangsim Last ≥ 200 bezogen au	ormator, ipedanz Ohm f 510 nWb iponenter r für: te Zeitcoc ung, bzw. n/Sekund kompatibl ung, bzw.	de- und A -Wiederg e. e Zeitcoc -Wiederg	udiospur abe bei	nom min max symmo	≥ 10 in in al: imal: 0, imal: etrisch, ≤ 4 pur, ≥ 29, 97 in al:	2 yss 25 yss 4 yss erdfrei 10 0 hm 2 yss ≥ 90 dB

Änderungen vorbehalten. Gedruckt in der Schweiz. 10.26.1231 (Ed. 0491)

Deutschland: Studer Revox GmbH, Geschäftsbereich STUDER, D-7827 Löffingen Bahnhofstrasse 13 · Telefon 0 76 54 / 10 71 - 10 74 · Telefax 0 76 54 / 7 73 30 **Worldwide:** STUDER International, Switzerland, a division of STUDER REVOX AG CH-8105 Regensdorf, Althardstr. 10 · Phone +41 1 870 75 11 · Fax +41 1 840 47 37